38. Final Thoughts on Deploying SVMs
Final Thoughts on Deploying SVMs
Hopefully it’s becoming clearer what Sebastian meant when he said Naive Bayes is great for text--it’s faster and generally gives better performance than an SVM for this particular problem. Of course, there are plenty of other problems where an SVM might work better. Knowing which one to try when you’re tackling a problem for the first time is part of the art and science of machine learning. In addition to picking your algorithm, depending on which one you try, there are parameter tunes to worry about as well, and the possibility of overfitting (especially if you don’t have lots of training data).
Our general suggestion is to try a few different algorithms for each problem. Tuning the parameters can be a lot of work, but just sit tight for now--toward the end of the class we will introduce you to GridCV, a great sklearn tool that can find an optimal parameter tune almost automatically.